

STEM Sims

Lesson 2: How Rough It Is

The coefficient of friction (μ) is a measure of the roughness of a surface. The larger the value of μ , the rougher the surface. Can you determine which factors affect the value of μ and which have no effect?

Doing the Science

- You must have completed Lesson 1 prior to conducting this lesson. You must have the data 1. from Lesson 1, Table 1 for this lesson's calculations.
- Use the following equation to convert the masses (m) (1.0 and 2.0 kilograms) from Lesson 1 2. into weight, which is the force (f_{ρ}) due to gravity (in newtons). Record the forces in Table 1.

$$f_g = mg$$
 where $(g = 9.80 \text{ m/s}^2)$

- 3. Copy the data from Lesson 1, Table 1 for the columns of Force Before Mass Begins Moving (f_b) and Force While Mass Is Moving (f_m) into Table 1 below.
- To find the coefficient of *static* friction (μ_s), divide f_b by f_g . This value is called the static 4. friction coefficient because the mass is *not* yet moving. Calculate and record μ_s for each mass (1.0 and 2.0-kg) in Table 2.
- 5. To find the coefficient of *kinetic* friction (μ_k), divide f_m by f_g . This value is called the kinetic friction coefficient because the mass is now moving. Calculate and record μ_k for each mass (1.0 and 2.0-kg) in Table 2.

	Force Due to Gravity	Force Before Mass Begins	Force While Mass Is
Mass (kg)	(f_g)	Moving (f_b)	Moving (f_m)
	(Newtons)	(Newtons)	(Newtons)
1.0			
2.0			

Table 1. Gravitational and Frictional Forces

Table 2. Coefficients of Friction

Mass (kg)	μ_s	μ_k
1.0		
2.0		

Do You Understand?

- Which coefficient was larger, μ_s or μ_k ? Provide a possible explanation for this observation. 1.
- 2. Did the size of the mass on the surface affect the value of μ_s or μ_k ? Provide a possible explanation for your response.

Name